China Aokman Worm Gearbox IEC Electric AC Motor Reduction Gearmotor bevel gearbox

Item Description

Item Description

Aokman Worm Gearbox IEC Electrical AC Motor Reduction Gearmotor Speed Reducer

Components:

1. Housing: Die-cast Aluminium Alloy Gearbox (RV571~RV090)
Cast Iron Gearbox (RV110~RV150)
2. Worm Wheel: Wearable Tin Bronze Alloy, Aluminum Bronze Alloy
3. Worm Shaft: 20Cr Steel, carburizing, quenching, grinding, surface hardness 56-62HRC, .3-.5mm remaining carburized layer right after precise grinding
4. Enter Configurations:
Equipped with Electric powered Motors (AC Motor, Brake Motor, DC Motor, Servo Motor)
IEC-normalized Motor Flange
Solid Shaft Enter
Worm Shaft Tail Extension Input
5. Output Configurations:
Keyed Hollow Shaft Output
Hollow Shaft with Output Flange
Plug-in Solid Shaft Output
six. Spare Elements: Worm Shaft Tail Extension, Solitary Output Shaft, Double Output Shaft, Output Flange, Torque Arm, Dust Cover
seven. Gearbox Portray:
Aluminium Alloy Gearbox:
After Shot Blasting, Anticorrosion Treatment method and Phosphating, Paint with the Coloration of RAL 5571 Gentian Blue or RAL 7035 Light Gray
Forged Iron Gearbox:
Right after Portray with Crimson Antirust Paint, Paint with the Color of RAL 5571 Gentian Blue

Models:

Hollow Shaft Enter with IEC-normalized Motor Flange
RV571~RV150
Reliable Shaft Input
RV571~RV150

Functions:

one. High quality aluminum alloy equipment box, mild bodyweight and not rust
2. 2 optional worm wheel components: Tin bronze or aluminum bronze alloy
three. Common components and very versatile for shaft configurations and motor flange interface
four. Numerous optional mounting alternatives
5. Low sounds, High performance in heat dissipation

In depth Photographs

 

Item Parameters

Parameters:

Types Rated Power Rated Ratio Input Hole Dia. Input Shaft Dia. Output Hole Dia. Output Shaft Dia. Center Distance
RV571 .06KW~.12KW five~sixty Φ9 Φ9 Φ11 Φ11 25mm
RV030 .06KW~.25KW 5~eighty Φ9(Φ11) Φ9 Φ14 Φ14 30mm
RV040 .09KW~.55KW five~100 Φ9(Φ11,Φ14) Φ11 Φ18(Φ19) Φ18 40mm
RV050 .12KW~1.5KW five~a hundred Φ11(Φ14,Φ19) Φ14 Φ25(Φ24) Φ25 50mm
RV063 .18KW~2.2KW 7.5~100 Φ14(Φ19,Φ24) Φ19 Φ25(Φ28) Φ25 63mm
RV075 .25KW~4.0KW seven.5~100 Φ14(Φ19,Φ24,Φ28) Φ24 Φ28(Φ35) Φ28 75mm
RV090 .37KW~4.0KW 7.5~100 Φ19(Φ24,Φ28) Φ24 Φ35(Φ38) Φ35 90mm
RV110 .55KW~7.5KW seven.5~one hundred Φ19(Φ24,Φ28,Φ38) Φ28 Φ42 Φ42 110mm
RV130 .75KW~7.5KW 7.5~a hundred Φ24(Φ28,Φ38) Φ30 Φ45 Φ45 130mm
RV150 two.2KW~15KW 7.5~a hundred Φ28(Φ38,Φ42) Φ35 Φ50 Φ50 150mm

Ratio: 5, 7.5, ten, 15, 20, twenty five, 30, forty, 50, sixty, 80, a hundred

Installation:

Flange Mounted
Foot Mounted
Torque Arm Mounted

Lubrication:

Grease Lubrication
Oil-tub and Splash Lubrication

Cooling:

Organic Cooling

Certifications

 

Packaging & Shipping

Business Profile

Our Positive aspects

FAQ

Application: Machinery, Industry
Function: Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened
Installation: Horizontal Type
Step: Single-Step

###

Customization:

###

Models Rated Power Rated Ratio Input Hole Dia. Input Shaft Dia. Output Hole Dia. Output Shaft Dia. Center Distance
RV025 0.06KW~0.12KW 5~60 Φ9 Φ9 Φ11 Φ11 25mm
RV030 0.06KW~0.25KW 5~80 Φ9(Φ11) Φ9 Φ14 Φ14 30mm
RV040 0.09KW~0.55KW 5~100 Φ9(Φ11,Φ14) Φ11 Φ18(Φ19) Φ18 40mm
RV050 0.12KW~1.5KW 5~100 Φ11(Φ14,Φ19) Φ14 Φ25(Φ24) Φ25 50mm
RV063 0.18KW~2.2KW 7.5~100 Φ14(Φ19,Φ24) Φ19 Φ25(Φ28) Φ25 63mm
RV075 0.25KW~4.0KW 7.5~100 Φ14(Φ19,Φ24,Φ28) Φ24 Φ28(Φ35) Φ28 75mm
RV090 0.37KW~4.0KW 7.5~100 Φ19(Φ24,Φ28) Φ24 Φ35(Φ38) Φ35 90mm
RV110 0.55KW~7.5KW 7.5~100 Φ19(Φ24,Φ28,Φ38) Φ28 Φ42 Φ42 110mm
RV130 0.75KW~7.5KW 7.5~100 Φ24(Φ28,Φ38) Φ30 Φ45 Φ45 130mm
RV150 2.2KW~15KW 7.5~100 Φ28(Φ38,Φ42) Φ35 Φ50 Φ50 150mm
Application: Machinery, Industry
Function: Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened
Installation: Horizontal Type
Step: Single-Step

###

Customization:

###

Models Rated Power Rated Ratio Input Hole Dia. Input Shaft Dia. Output Hole Dia. Output Shaft Dia. Center Distance
RV025 0.06KW~0.12KW 5~60 Φ9 Φ9 Φ11 Φ11 25mm
RV030 0.06KW~0.25KW 5~80 Φ9(Φ11) Φ9 Φ14 Φ14 30mm
RV040 0.09KW~0.55KW 5~100 Φ9(Φ11,Φ14) Φ11 Φ18(Φ19) Φ18 40mm
RV050 0.12KW~1.5KW 5~100 Φ11(Φ14,Φ19) Φ14 Φ25(Φ24) Φ25 50mm
RV063 0.18KW~2.2KW 7.5~100 Φ14(Φ19,Φ24) Φ19 Φ25(Φ28) Φ25 63mm
RV075 0.25KW~4.0KW 7.5~100 Φ14(Φ19,Φ24,Φ28) Φ24 Φ28(Φ35) Φ28 75mm
RV090 0.37KW~4.0KW 7.5~100 Φ19(Φ24,Φ28) Φ24 Φ35(Φ38) Φ35 90mm
RV110 0.55KW~7.5KW 7.5~100 Φ19(Φ24,Φ28,Φ38) Φ28 Φ42 Φ42 110mm
RV130 0.75KW~7.5KW 7.5~100 Φ24(Φ28,Φ38) Φ30 Φ45 Φ45 130mm
RV150 2.2KW~15KW 7.5~100 Φ28(Φ38,Φ42) Φ35 Φ50 Φ50 150mm

What Is a Gearbox?

There are several factors to consider when choosing a gearbox. Backlash, for example, is a consideration, as it is the angle at which the output shaft can rotate without the input shaft moving. While this isn’t necessary in applications without load reversals, it is important for precision applications involving load reversals. Examples of these applications include automation and robotics. If backlash is a concern, you may want to look at other factors, such as the number of teeth in each gear.
gearbox

Function of a gearbox

A gearbox is a mechanical unit that consists of a chain or set of gears. The gears are mounted on a shaft and are supported by rolling element bearings. These devices alter the speed or torque of the machine they are used in. Gearboxes can be used for a wide variety of applications. Here are some examples of how gearboxes function. Read on to discover more about the gears that make up a gearbox.
Regardless of the type of transmission, most gearboxes are equipped with a secondary gear and a primary one. While the gear ratios are the same for both the primary and secondary transmission, the gearboxes may differ in size and efficiency. High-performance racing cars typically employ a gearbox with two green and one blue gear. Gearboxes are often mounted in the front or rear of the engine.
The primary function of a gearbox is to transfer torque from one shaft to another. The ratio of the driving gear’s teeth to the receiving member determines how much torque is transmitted. A large gear ratio will cause the main shaft to revolve at a slower speed and have a high torque compared to its counter shaft. Conversely, a low gear ratio will allow the vehicle to turn at a lower speed and produce a lower torque.
A conventional gearbox has input and output gears. The countershaft is connected to a universal shaft. The input and output gears are arranged to match the speed and torque of each other. The gear ratio determines how fast a car can go and how much torque it can generate. Most conventional transmissions use four gear ratios, with one reverse gear. Some have two shafts and three inputs. However, if the gear ratios are high, the engine will experience a loss of torque.
In the study of gearbox performance, a large amount of data has been collected. A highly ambitious segmentation process has yielded nearly 20,000 feature vectors. These results are the most detailed and comprehensive of all the available data. This research has a dual curse – the first is the large volume of data collected for the purpose of characterization, while the second is the high dimensionality. The latter is a complication that arises when the experimental gearbox is not designed to perform well.
gearbox

Bzvacklash

The main function of a gearhead is to multiply a moment of force and create a mechanical advantage. However, backlash can cause a variety of issues for the system, including impaired positioning accuracy and lowered overall performance. A zero backlash gearbox can eliminate motion losses caused by backlash and improve overall system performance. Here are some common problems associated with backlash in gearheads and how to fix them. After you understand how to fix gearbox backlash, you’ll be able to design a machine that meets your requirements.
To reduce gearbox backlash, many designers try to decrease the center distance of the gears. This eliminates space for lubrication and promotes excessive tooth mesh, which leads to premature mesh failure. To minimize gearbox backlash, a gear manufacturer may separate the two parts of the gear and adjust the mesh center distance between them. To do this, rotate one gear with respect to the fixed gear, while adjusting the other gear’s effective tooth thickness.
Several manufacturing processes may introduce errors, and reducing tooth thickness will minimize this error. Gears with bevel teeth are a prime example of this. This type of gear features a small number of teeth in comparison to its mating gear. In addition to reducing tooth thickness, bevel gears also reduce backlash. While bevel gears have fewer teeth than their mating gear, all of their backlash allowance is applied to the larger gear.
A gear’s backlash can affect the efficiency of a gearbox. In an ideal gear, the backlash is zero. But if there is too much, backlash can cause damage to the gears and cause it to malfunction. Therefore, the goal of gearbox backlash is to minimize this problem. However, this may require the use of a micrometer. To determine how much gearbox backlash you need, you can use a dial gauge or feeler gauge.
If you’ve been looking for a way to reduce backlash, a gearbox’s backlash may be the answer. However, backlash is not a revolt against the manufacturer. It is an error in motion that occurs naturally in gear systems that change direction. If it is left unaccounted for, it can lead to major gear degradation and even compromise the entire system. In this article, we’ll explain how backlash affects gears and how it affects the performance of a gearbox.

Design

The design of gearboxes consists of a variety of factors, including the type of material used, power requirements, speed and reduction ratio, and the application for which the unit is intended. The process of designing a gearbox usually begins with a description of the machine or gearbox and its intended use. Other key parameters to consider during gearbox design include the size and weight of the gear, its overall gear ratio and number of reductions, as well as the lubrication methods used.
During the design process, the customer and supplier will participate in various design reviews. These include concept or initial design review, manufacturing design validation, critical design review, and final design review. The customer may also initiate the process by initiating a DFMEA. After receiving the initial design approval, the design will go through several iterations before the finalized design is frozen. In some cases, the customer will require a DFMEA of the gearbox.
The speed increaser gearboxes also require special design considerations. These gearboxes typically operate at high speeds, causing problems with gear dynamics. Furthermore, the high speeds of the unit increase frictional and drag forces. A proper design of this component should minimize the effect of these forces. To solve these problems, a gearbox should incorporate a brake system. In some cases, an external force may also increase frictional forces.
Various types of gear arrangements are used in gearboxes. The design of the teeth of the gears plays a significant role in defining the type of gear arrangement in the gearbox. Spur gear is an example of a gear arrangement, which has teeth that run parallel to the axis of rotation. These gears offer high gear ratios and are often used in multiple stages. So, it is possible to create a gearbox that meets the needs of your application.
The design of gearboxes is the most complex process in the engineering process. These complex devices are made of multiple types of gears and are mounted on shafts. They are supported by rolling element bearings and are used for a variety of applications. In general, a gearbox is used to reduce speed and torque and change direction. Gearboxes are commonly used in motor vehicles, but can also be found in pedal bicycles and fixed machines.
gearbox

Manufacturers

There are several major segments in the gearbox market, including industrial, mining, and automotive. Gearbox manufacturers are required to understand the application and user industries to design a gearbox that meets their specific requirements. Basic knowledge of metallurgy is necessary. Multinational companies also provide gearbox solutions for the power generation industry, shipping industry, and automotive industries. To make their products more competitive, they need to focus on product innovation, geographical expansion, and customer retention.
The CZPT Group started as a small company in 1976. Since then, it has become a global reference in mechanical transmissions. Its production range includes gears, reduction gearboxes, and geared motors. The company was the first in Italy to achieve ISO certification, and it continues to grow into one of the world’s leading manufacturers of production gearboxes. As the industry evolves, CZPT focuses on research and development to create better products.
The agriculture industry uses gearboxes to implement a variety of processes. They are used in tractors, pumps, and agricultural machinery. The automotive industry uses gears in automobiles, but they are also found in mining and tea processing machinery. Industrial gearboxes also play an important role in feed and speed drives. The gearbox industry has a diverse portfolio of manufacturers and suppliers. Here are some examples of gearboxes:
Gearboxes are complex pieces of equipment. They must be used properly to optimize efficiency and extend their lifespan. Manufacturers employ advanced technology and strict quality control processes to ensure their products meet the highest standards. In addition to manufacturing precision and reliability, gearbox manufacturers ensure that their products are safe for use in the production of industrial machinery. They are also used in office machines and medical equipment. However, the automotive gearbox market is becoming increasingly competitive.

China Aokman Worm Gearbox IEC Electric AC Motor Reduction Gearmotor     bevel gearbox	China Aokman Worm Gearbox IEC Electric AC Motor Reduction Gearmotor     bevel gearbox
editor by czh 2023-01-14